

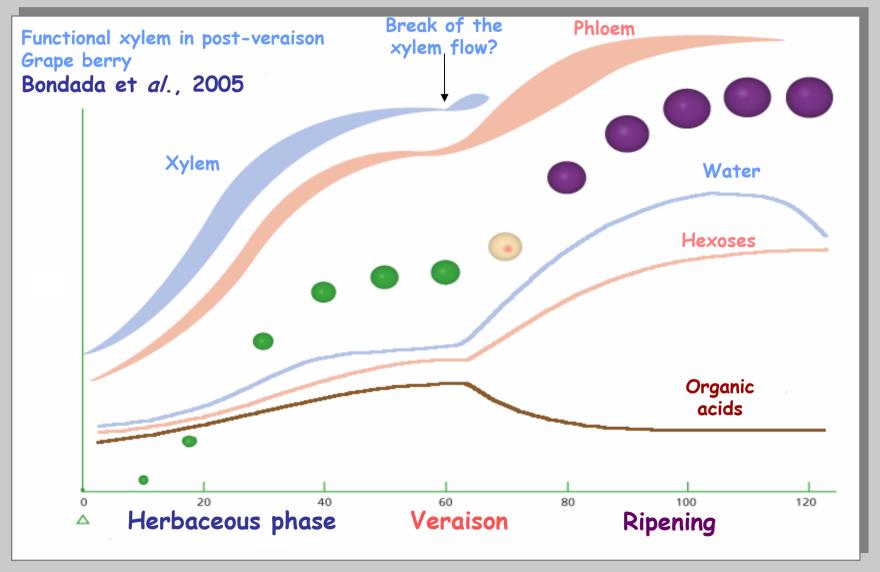
Grapevine genomics and ripening : on-going worldwide research

Romain FOUQUET, Grant R. CRAMER, Mark R. THOMAS and Serge DELROT

I Grape berry development

II Grape Genome and ESTs

III What is transcriptomic?


IV Transcriptomic approaches

V Grape transcriptomic

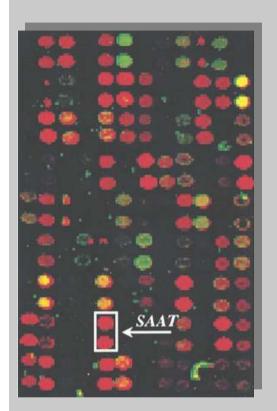
Spotted microarraysVitis Genechip

VI Importance of transcriptomic studies

Grape berry development

Kennedy, 2002

Grape Genome 475 Mb ~ 25000 genes


International research program "Mieux comprendre la Vigne", based on grape sequencing genome program and exploitation of corresponding data.

Vitis vinifera ESTs

Cultivars	Terzi PSTs (%)	Plant Organ	Tenzi FSTs (%)	Developmental Stage	Tenzi FSTs (%)	Stress Treatment	Total FSTs (%)
Canemei Saissignon	63,799 (47)	Вену	48,836 (25-6)	Pieveralson	34,753 (40)	Aulode	51,492
Chardonnay	56, 337 (41.3)	f.ea'	42,953 (31.7)	Postveralson	17,872 (13-2)	Bioùt	3,650 (3.9)
Piret noi	5 ,681 (4.2)	Oower	11,326 (8,4)	Veraison	10,689 (8.0)	6D	74,39 9 (S7.0)
Shiraz	7,393 (5-5)	Roots	7,271 (5.4)	Pre-anthesis	6,117 (4.5)		
Regeni	1,753 (1.3)	Compound bud	6,112 (4.5)	Anthesis	4,426 (3.3)		
Ugni Blanc	675 (0,5)	Berry without seeds	5,576 (4,1)	Postmeiosis	3,748 (2.8)		
Chasselas	261 (0.2)	Stem	4,760 (3.5)	Bud swelling	1,250 (1.3)		
Total	135601	Peilole	4,491 (3.3)	ND*	56,046 (41,3)		
		Berry pedicle	2,722 (2,0)				
Genban	<u>k data</u>	Эчна бр	857 (0.4)				
217279 ESTs		Seeds	478 (0.4)				
15181 Ur	nigenes	Beny skir	309 (0.2)	From	Goes da	Silva et <i>al</i>	., 2005

- Study of the transcriptome, ie the complete set of messenger RNA transcripts that can be translated into proteins and enzymes
- Very powerful approach towards understanding gene function
- Can lead to important strategies for plant improvement

Strawberry transcriptomic approach 1

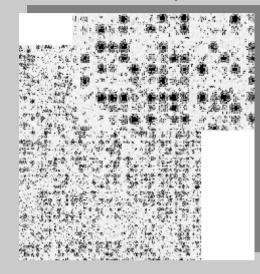
SAAT: Strawberry alcohol acyltransferase

2181 unigenes

---- Identification of a gene involved in flavour components biosynthesis

Aharoni et al., 2000

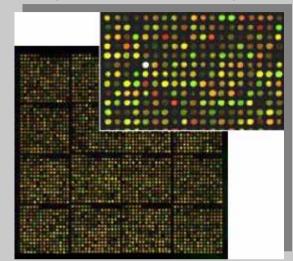
Substrate specificity of the recombinant enzyme


Alcohel	Carbon No.	Estar Familiad	Activity ^a	Reported in Streateury
Nethand	C1:0	Methyl acetone	1.11 ± 0.28	Yes
Ethanol	C2:8	Ethyl sostaée	0.62 ± 0.18	Yes
1-Propand	C3:8	1-Propyl acatala	2.60 ± 0.23	Yes
2-Propend	C3:8	2-Propyl acatala	1.39 ± 0.15	Yes
1-Butang	C4:8	I-Butyl acetate	2.29 ± 3.25	Yes
2-Butang	C4:8	2-Butyl acetate	3.11 ± 3.02	Yes
3-Methyl-1-butanol (Isoamyleicohol)	C5:8	3-Matigi-1-butyi acatala (isoamyi acatala)	3.68 ± 0.25	Yes
1-Haxenol	C6:8	I-Hoxyl acetate;	3.44(土 3.37	Yes
ežs-2-Hexen-1-ol	C6:1	c/a-2-Hevenyl acetate	6.65 ± 0.55	No
ežs-3-Hexen-1-ol	C6:1	c/a-3-Hervenyl scielate	4.68 ± 3.14	Yes
terra-2-Hersen-1-ol	C6:1	bans-2-Hazangi acetate	9.20 ± 0.65	Yes
terra-3-Hersen-1-ol	C6:1	bans-3-Hazanyi acetate	1.25 ± 0.07	No
1-Hspitanol	C2:8	Hapiyi aceizia	14.89 ± 4.12	No
1-Defanol	C8:9	I -Octyl acetate	18.36 ± 2.69	Yes
1-Nenanel	C2:8	1-Nonyl aceisia	14.69 ± 0.11	No
1-Decenal	C10:0	1-Decyl sostais	7.79 ± 0.18	Yes
Furfurylaicchei	CS:2	Furfuryl acatala	0.72 ± 0.06	No
Benzylalcohol	C7:3	Benzyl acetata	0.68 ± 0.04	Yes
2-Phenylothylalcahol	C8:3	2-Phenylethyl acsists	1.58 ± 0.12	Yes
Lineical	C10:2	Linelyi ecetete	NDα	No

The SAAT enzyme shows maximum activity with alcohols whose corresponding esters are the major components of strawberry volatiles

Aharoni et al., 2000

Transcriptomic approaches

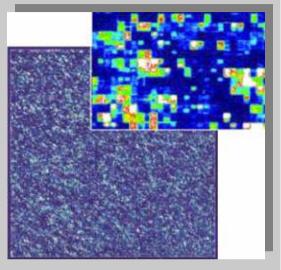

Macroarrays

Support	Nylon membrane
Ø spots	0,5-1 mm
Density	100 to 300/cm ²
Probes	PCR products

Targets Radiolabeled cDNA

Spotted microarrays

Glass slide


100 µm

100 to 1,000/cm²

PCR products or oligonucleotides

cDNA or PCR products labeled with fluorophore dyes (Cy3/Cy5)

Gene Chips, Affymetrix

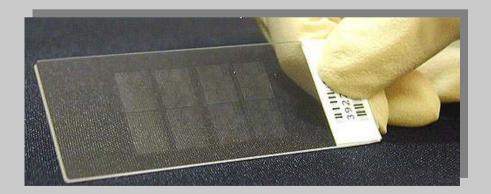
Glass chip with chemical coating

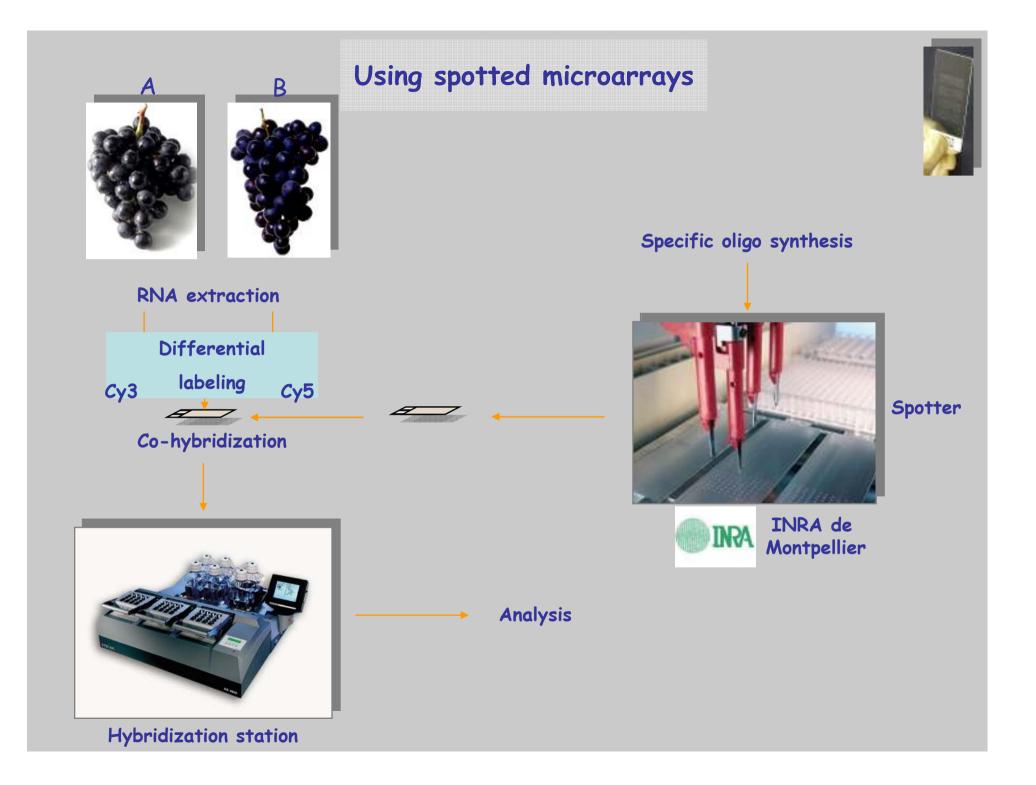
20 µm

Up to 25,000/cm²

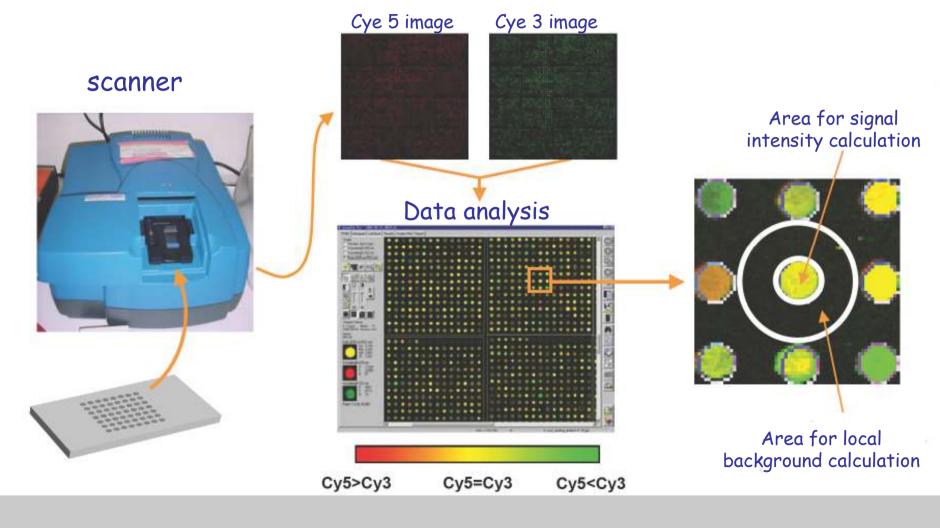
Small oligonucleotides synthetised *in situ*

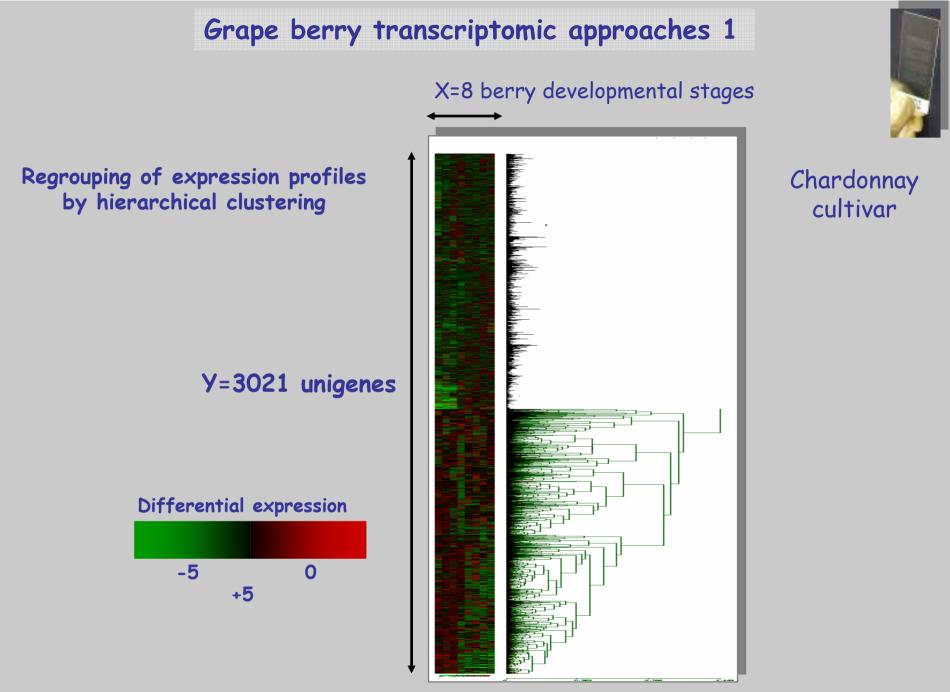
ARNc or PCR products labeled with fluorophore dyes(Biotine/Streptavidine


Overview of microarray chips

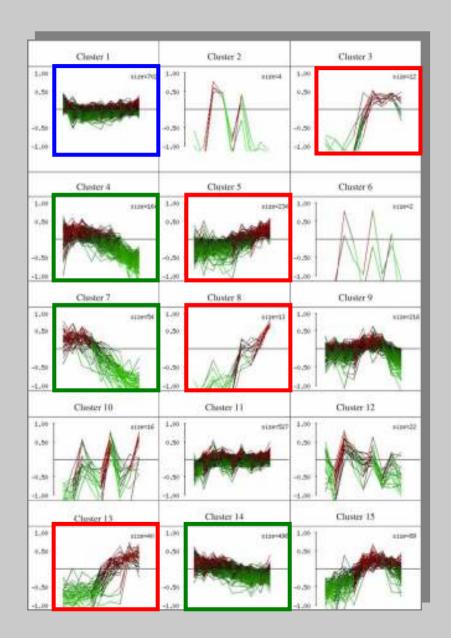

The GeneChip[®] Vitis Array 16,600 unigenes

Spotted microarray


Glass slides with 14,562 unigenes



Spotted microarrays analysis



Terrier et al., 2005

Organization of the genes according to their expression pattern

Terrier et al., 2005

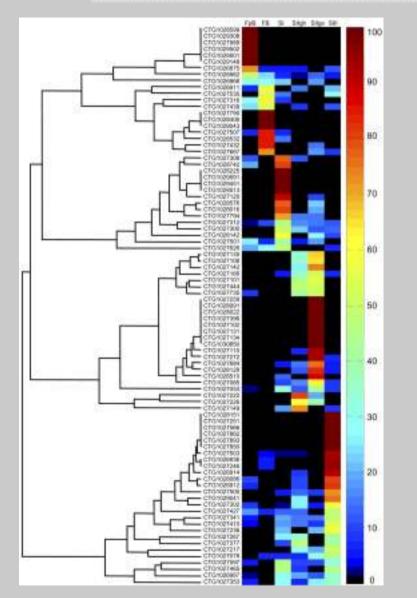
Transcriptomic : On-going research

•UMR 6161, Univ. Bdx1, INRA de Montpellier, CIVC, ITV, ADAR Identification of genes involved in grape berry maturity (Cabernet franc, Cabernet Sauvignon et Pinot meunier).

•UMR 6161, Univ. Bdx2, Univ. Vérone Transcriptomic of berries submitted to ABA treatment.

Grape berry transcriptomic approaches 1

In silico characterization of the Grape Transcriptome

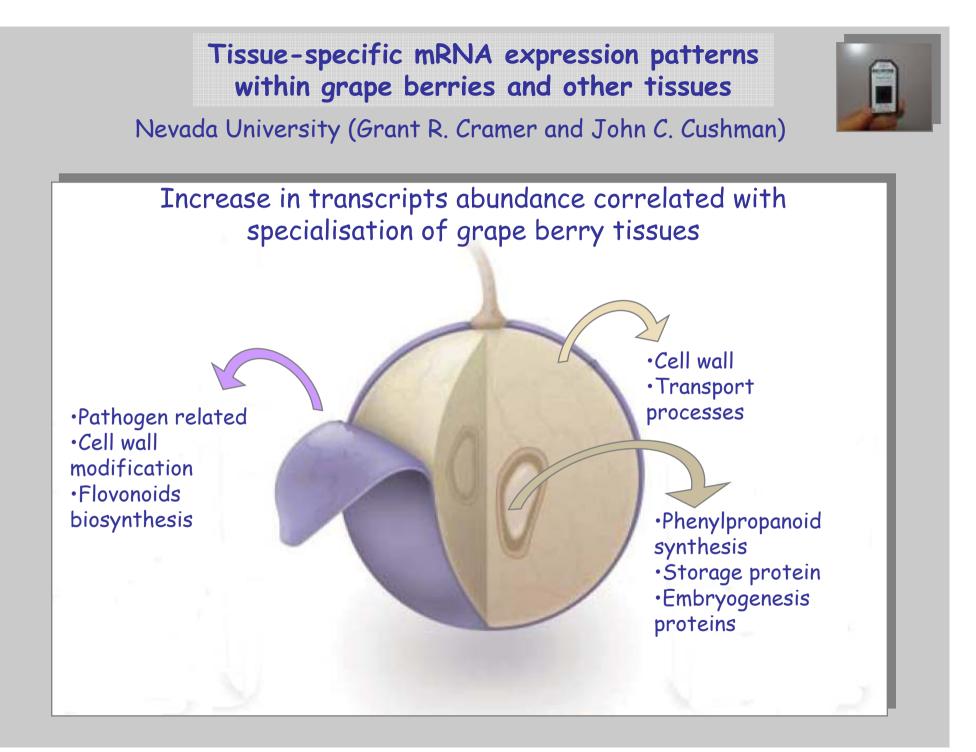

	Unigene cDNA Library ID	Tissue	Developmental Stage
	13952	Berry without seeds	Pre-veraison
	13015	Berry	Pre-veraison (Stage I)
1	14168	Stem	Pre-veraison
	14285	Berry	Pre-veraison
	14447	Compound bud	NA
	14374	Compound bud	NA
	14375	Petiole	Veraison
d L	8669	Berry	Pre-veraison
	14445	Root	ND
	14444	Berry	Veraison
ПГ	14286	Berry	Veraison
L	13017	Berry	Post-veraison (Stage III)
	8670	Berry	Post-veraison
	12435	Berry - Drought Stress	Mixed stages
6.5	11064	Berry	Veraison
	<u> </u>	Berry	Pre-veraison (Stage II, berries green soft)
h.		Berry	Pre-veraison (Stage II, berries green hard
12974		Root - Mixed Stress	Mixed stages
	12273	Leaf - Biotic Stress	Post-veraison (Stage III)
	12949	Leaf	Pre-veraison (Stage II)
	г 12751	Leaf - Biotic Stress	Pre-veraison (Stage II)
Н	L 12753	Leaf	Pre-veraison (Stage II)
	L 12277	Leaf - Biotic Stress	Pre-veraison (Stage II)
	12274	Leaf - Biotic Stress	Post-veraison (Stage III)
	L 12752	Leaf	Pre-veraison (Stage II)
- F	14167	Flower	Anthesis
	13014	Flower	Pre-anthesis
	10208	Leaf - Mixed Stress	Mixed stages
0.9	L 12948	Leaf	Post-veraison (Stage III)

29 cDNA libraries (> 1000 ESTs)

Analysis based on the ESTs distribution of 665 TCs differentially expressed.

Goes da Silva et *al.*, 2005

In silico charcteriezation of 87 genes differentially expressed during grape berry development



X = 6 cDNA libraries corresponding to the major grape berry developmental stages

Analysis based on the ESTs distribution of 87 genes differentially expressed

8 clusters

- Pathogenesis related
- Abiotical stress
- Primary metabolism
- Secondary metabolism
- •Berry growth and water relations
- •Ethylen metabolism
- Seed specific proteins
- •Other proteins

Transcriptomic : On-going research (Grant R. Cramer and John C. Cushman)

•Water deficit response

Increase in transcript expression of

•Genes involved in water and ions transport

• Genes involved in Phenylpropanoid biosynthesis

• Genes involved in stress response

•Study of berry development for two different cultivars, Cabernet Sauvignon and Chardonnay

 Between 27 to 34% of the 14,650 gene probes represented on the microarray show differential expression across berry development in both cultivars.

• Transcript abundance for the phenylpropanoid pathway (affecting berry phenolics and color) was significantly different between the two cultivars and affected by water stress. Transcriptomic : On-going research (Peter Hayes and Mark R. Thomas)

•Berry development of Cabernet sauvignon over 3 seasons grown in 3 different regions that range from mild to hot growing conditions (Clare, Willunga and Mildura).

+ normal irrigation and partial deficit irrigation

Thousands of genes changed their level of expression at veraison as expected, but also in both Pre and Post-veraison stages.

Identification of key genes involved in berry development

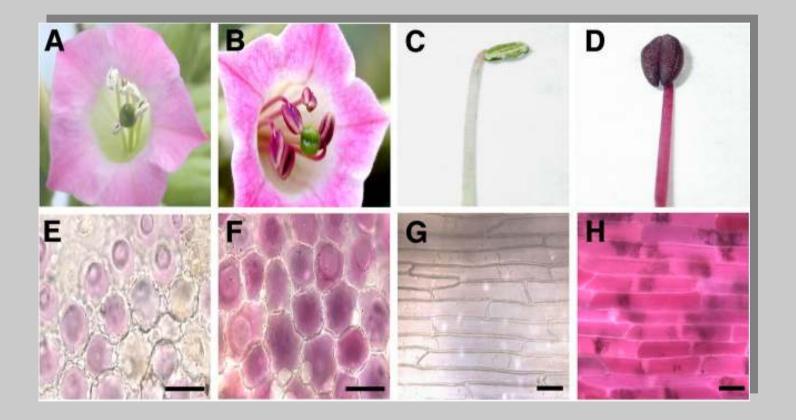
Brassinosteroids (Plant steroidal Hormones) have a role in berry development

Transcript accumulation patterns consistent with increase in BR levels at the onset of ripening

Application of BRs to grape berries promote ripening

Transcriptomic interests

• Analysis of transcriptional regulation of genes associated to grape-berry quality


Sugar, organic acids and flavonoid metabolism...

Identification of genes involved in response
to biotic and abiotic stress :

Pathogenesis resistance, saline, water, cold stress....

Functional characterization of related genes

Accumulation of phenolic compounds in tobaco overexpressing the Vvmyb5 transcription factor

Deluc, Hamdi et al., 2006

Thanks to

Grant R. CRAMER Nevada University, Reno, CSIRO.

MARK R. THOMAS; CSIRO, Adélaïde, Australia.

Laboratoire de Transport des Assimilats UMR CNRS 6161, Poitiers S. DELROT : Professor F. LECOURIEUX :CNRS Researcher <u>R. FOUQUET</u> : Post-doc C. CAMPS : Ph D

