

VINELINK INTERNATIONAL www.liendelavigne.org

ASSEMBLEE GENERALE 2017 2017 General Assembly

NOUVEAUX OUTILS POUR LE SUIVI DE

LA QUALITE DES RAISINS :

Capteurs, analyse des données, outils

d'aide à la décision

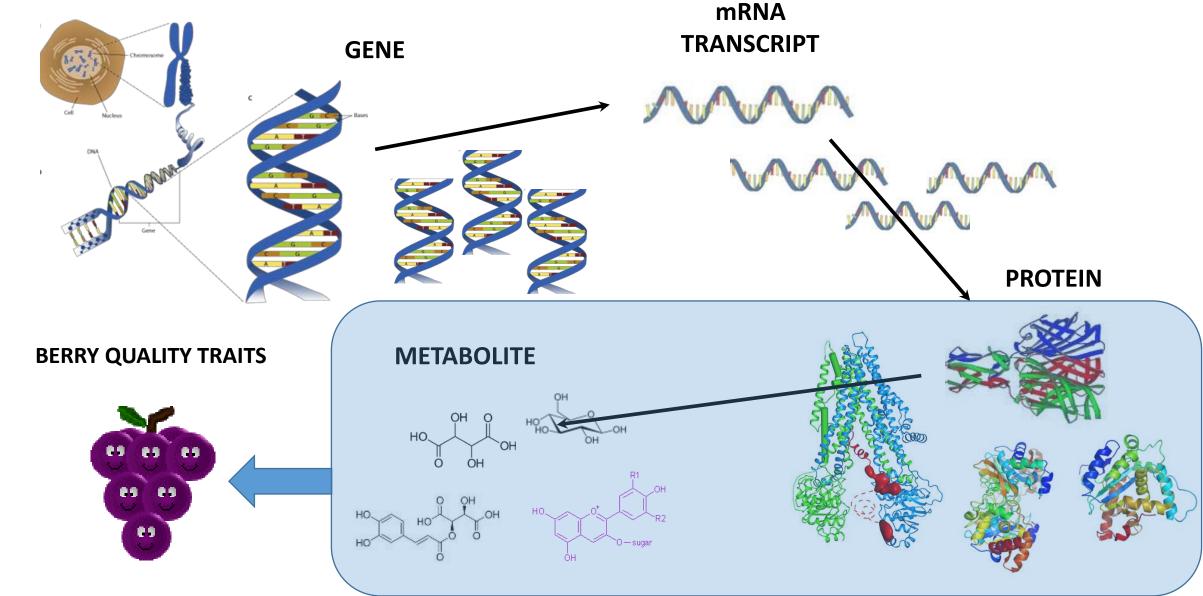
New tools for monitoring grapes quality : sensors, data analysis, decision

High throughput transcriptomic and metabolomic, grape quality, climate and grape cultivars

Sara Zenoni

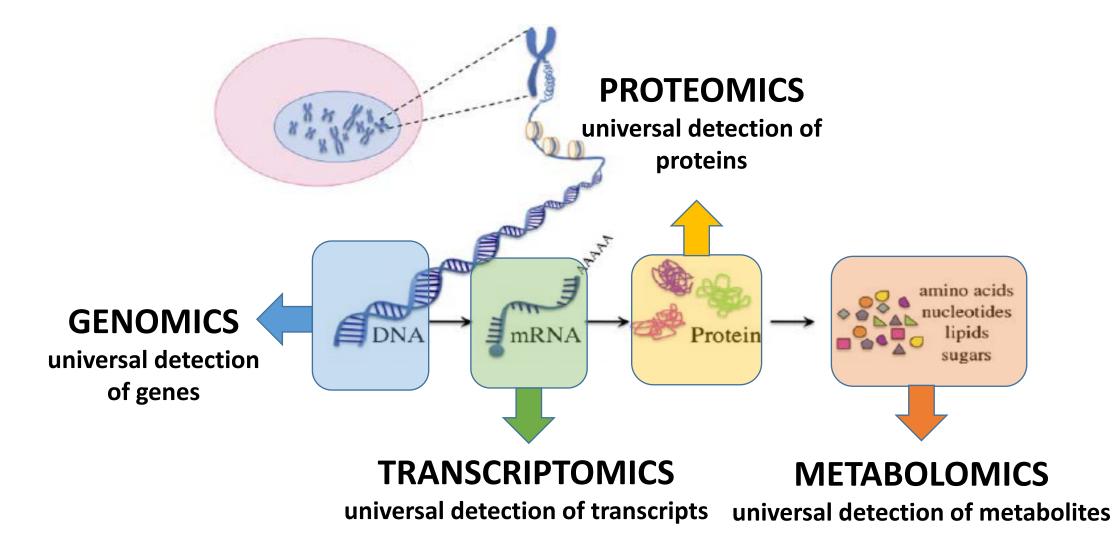
Dipartimento di **BIOTECNOLOGIE**

OUTLINE OF PRESENTATION

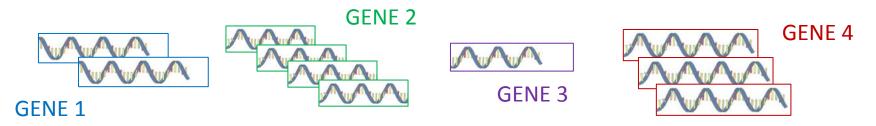

> Brief introduction of the principal "Omic" (high throughput) approaches

> Trancriptomic and metabolomic in grape: platforms and technological advances

Some of the most recent results obtained by transcriptomic and metabolomic for berry ripening and plant responses to biotic and abiotic stresses


THE FLOW OF BIOLOGICAL INFORMATION

GENOME is the total DNA of a cell


"OMIC" APPROACHES

'Omic' approaches adopt a holistic view of the molecules that make up a cell, tissue or organism

TRANSCRIPTOMICS

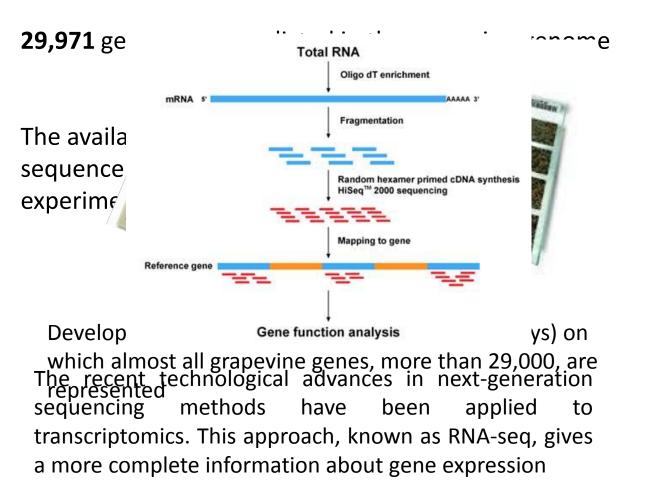
- The transcriptome depends on gene expression and therefore changes qualitatively and quantitatively according to cell type, developmental stage and in response to external conditions or physiological states
- Transcriptomic methods are based on one of two principles, both of which allow for a highly parallel analysis of thousands of transcripts:
 - 1) the digital analysis of sequence data by counting the number of times a particular sequence is represented in a sample;

2) the quantitative analysis of hybridisation data (array hybridization).

TRANSCRIPTOMICS

2000 the first study aimed to identity genes expressed during ripening using low-throughput Sanger sequencing approach

2004, the first commercial high-density In oligonucleotide arrays became available for the grapevine (about 14.000 genes)


In 2007 the complete genome was published and became possible to monitor gene expression at whole-genome level.

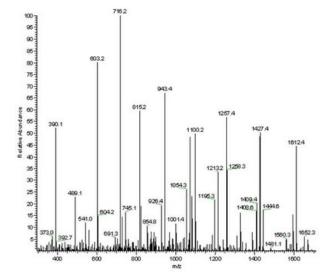
	Reference	Techniques	Cultivar	Tissue	Sequence information and chip
	Davies and Robinson [9]	Differential screening	Shiraz	deseeded berry	Shiraz post-veraison berry cDNA library
r	Ablet et al. [10]	EST analysis	Chardonnay	berry	2,479 Chardonnay berry ESTs
	Terrier et al. [11]	EST analysis	Shiraz	berry	275 berry (3 stages) ESTs
	Venter et al. [13]	cDNA-AFLP	Chardonnay	deseeded berry	
	Burgher and Botha [14]	cDNA-AFLP	Cabernet Sauvignon; Clairette Blanche	ьепу	
	Fei <i>et al.</i> [16]	Digital expression analysis			TIGR Grape Gene Index 2.0
	Moser et al. [12]	EST analysis	Pinot Noir	berry	1,743 Pinot Noir berry (at veraison) EST
	Terrier et al. [18]	cDNA microarray analysis	Chardonnay; Cabertnet Sauvignon; Shiraz	berry	3,175 Shiraz berry (9 developmental stages) unigenes
	da Silva <i>et al.</i> [17]	Digital expression analysis	Chardonnay	berry	104,075 Vitic sequences deposited into GeneBank (NCBI) as of September 30, 2003
	Waters et al. [20]	cDNA microarray	Shiraz	skin	4,608 Shiraz ripening berry (different developmental stages) cDNA clones
	Mori et al. [27]	microarray analysis	Cabernet Sauvignon; Clairette Blanche	skin	Affymterix GeneChip [®] Vitis genome array ver. 1.0
	Grimplet <i>et al.</i> [24]	microarray analysis	Cabernet Sauvignon	skin, pulp and seed	Affymterix GeneChip [*] Vitis genome array ver. 1.0
	Deluc et al. [25]	microarray analysis	Cabernet Sauvignon	berry	Affymterix GeneChip [®] Vitis genome array ver. 1.0
	Pilati et al. [26]	microarray analysis	Pinot Noir	ьепу	Affymterix GeneChip [®] Vitis genome array ver. 1.0
	Chervin et al. [31]	microarray analysis	Cabernet Sauvignon	berry	Grape AROS V1.0
	Gatto et al. [21]	cDNA microarray analysis	21 cultivars*	berry	4,224 cDNA clones (Pinot Noir; Moscato Bianco; Teroldego;Merzling) SSH clones
	Glissant <i>et al.</i> [19]	cDNA microarray analysis	Chardonnay	berry	3,175 Shiraz berry unigenes
	Iandolino et al.	EST analysis and MPSS	Cabernet	berry	30,737 and 26,878 berry (green, hard
	Lund et al. [28]	microarray analysis	Cabernet Sauvignon	ьепу	Affymterix GeneChip [®] Vitis genome array ver. 1.0
	Zamboni <i>et al.</i> [15]	AFLP-TP	Corvina	deseeded berry	
	Carra et al. [38]	miRNA analysis	Nebbiolo	ьепу	small berry (3 developmental stages) RNA library
	Deluc <i>et al.</i> [29]	microarray analysis	Chardonnay; Cabertnet Sauvignon	berry	Affymterix GeneChip [®] Vitis genome array ver. 1.0
	Mica et al. [39]	miRNA analysis; 454 ^b	Pinot Noir	berry	1,974 miRNA-specific probes
	Rizzini et al. [32]	microarray analysis	Raboso Piave	skin	Grape AROS V1.0
	Zenoni et al. [37]	RNA-seq	Corvina	berry	Vitis genome 8.4X prediction
	Zamboni <i>et al.</i> [33]	microarray analysis	Corvina	berry	GrapeArray 1.2
r	Koyama <i>et al.</i> [30]	microarray analysis	Cabernet Sauvignon	skin	Affymterix GeneChip [®] Vitis genome array ver. 1.0

THE GRAPEVINE GENOME

The Grapevine genome was sequenced by the Italian –French consortium

SEQBENDCZAG Oppappebach

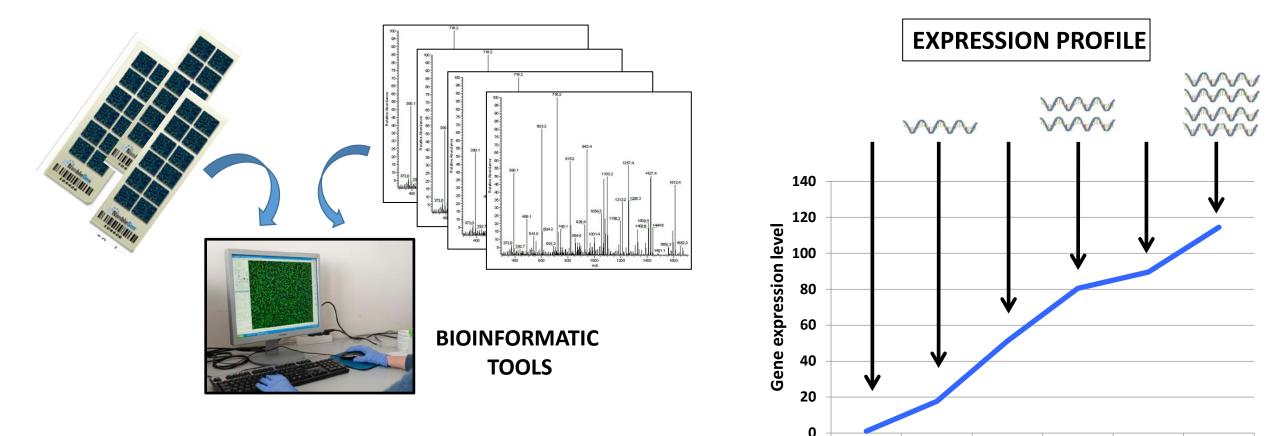
The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla


The French-Italian Public Consortium for Grapevine Genome Characterization*

METABOLOMICS

- Metabolomics can generally be defined as the study of a complete set of metabolites (small molecules Mr< 1,000D) produced in a single cell, tissue or organ.
- Like the transcriptome, the metabolome is dynamic and varies by cell type, developmental stage and in response to different stimulus.
- Unlike the transcriptome, the metabolome can only be achieved using multiple analytical platforms to cover the chemical diversity of metabolites

Mass spectrometry is the most commonly-used method to investigate/identify metabolites.


lons are created from neutral metabolites, which are then separated according to their mass-to-charge ratio (m/z) and detected to create a mass spectrum, which is characteristic of the molecular mass and/or structure.

MS associated with Gas chromatography (**GC-MS**) is used for the analysis of volatile metabolites MS associated with Liquid chromatography (**LG-MS**) is used for the analysis of non volatile metabolites

TRANSCRIPTOMIC AND METABOLOMIC DATA ANALYSIS

Both transcriptomic and metabolomic analysis produce a huge amount of data

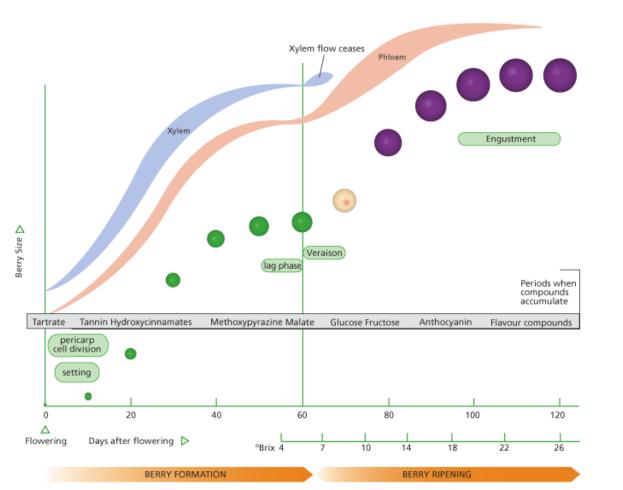
T1

T0

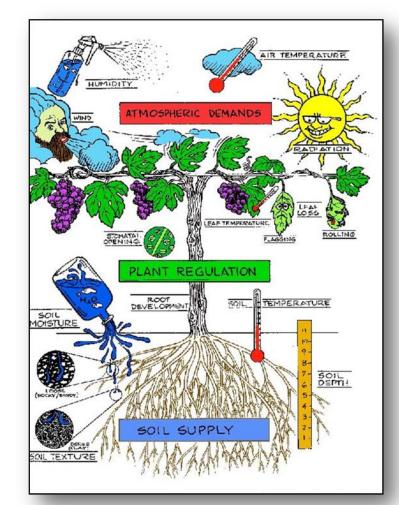
T2

T3

Samples


T5

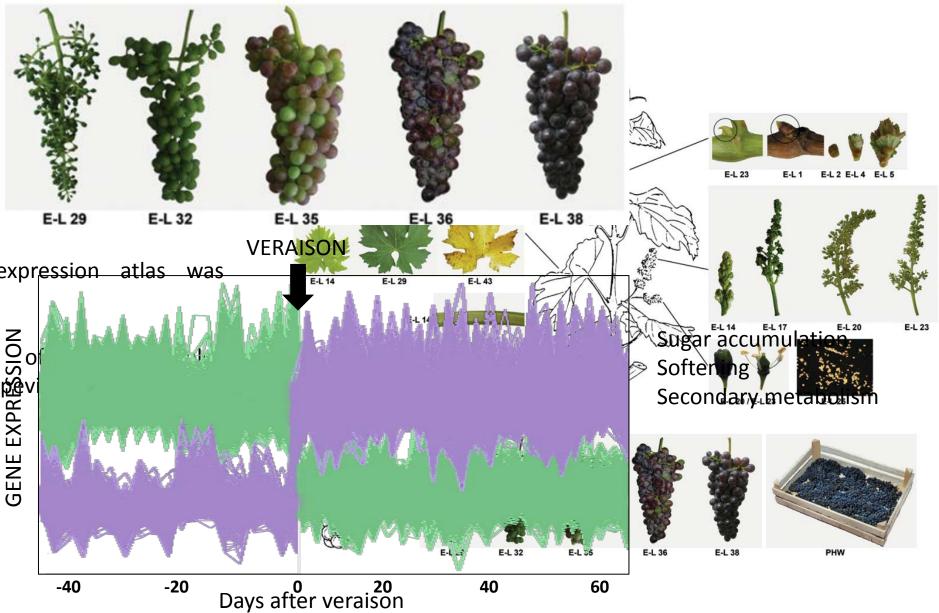
T4


Genes and metabolites that significantly modify their expression or accumulation levels

PRINCIPAL DEVELOPMENTAL AND PHYSIOLOGICAL PROCESSES INVESTIGATED BY TRANSCRIPTOMIC AND METABOLOMIC IN GRAPE

BERRY FORMATION AND RIPENING

RESPONSES TO BIOTIC AND ABIOTIC STRESSES

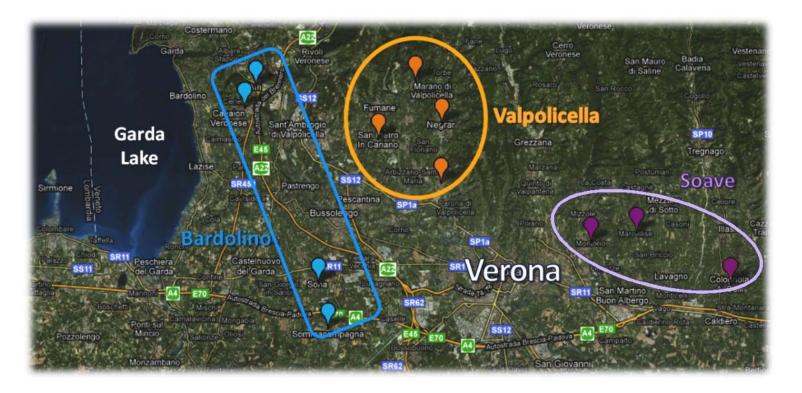

The Plant Cell, Vol. 24: 3489–3505, September 2012, LARGE-SCALE BIOLOGY ARTICLE

The Grapevine Expressi Transcriptome Shift Driv a Maturation Program^{MIC}

Marianna Fasoli,^a Silvia Dal Santo,^a Sara Ze Anita Zamboni,^a Andrea Porceddu,^c Luca V Alberto Ferrarini,^a Massimo Delledonne,^a a

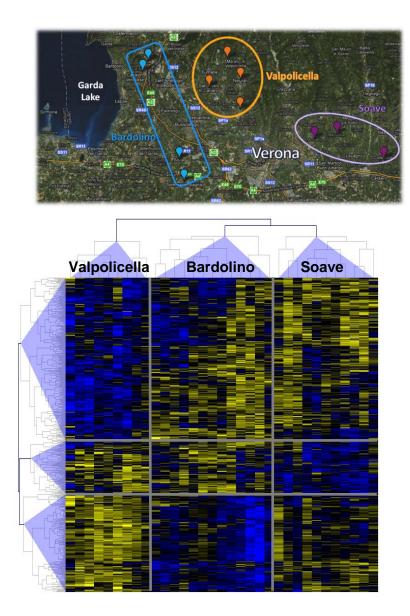
2012 The first gene expression atlas was established for grapevine

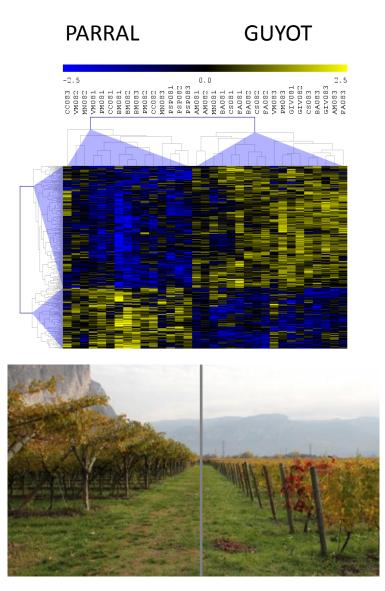
Photosynthesis Transcriptomic analysis Cell.cycle representing different grapev Primary metabolism development


RESEARCH PAPER

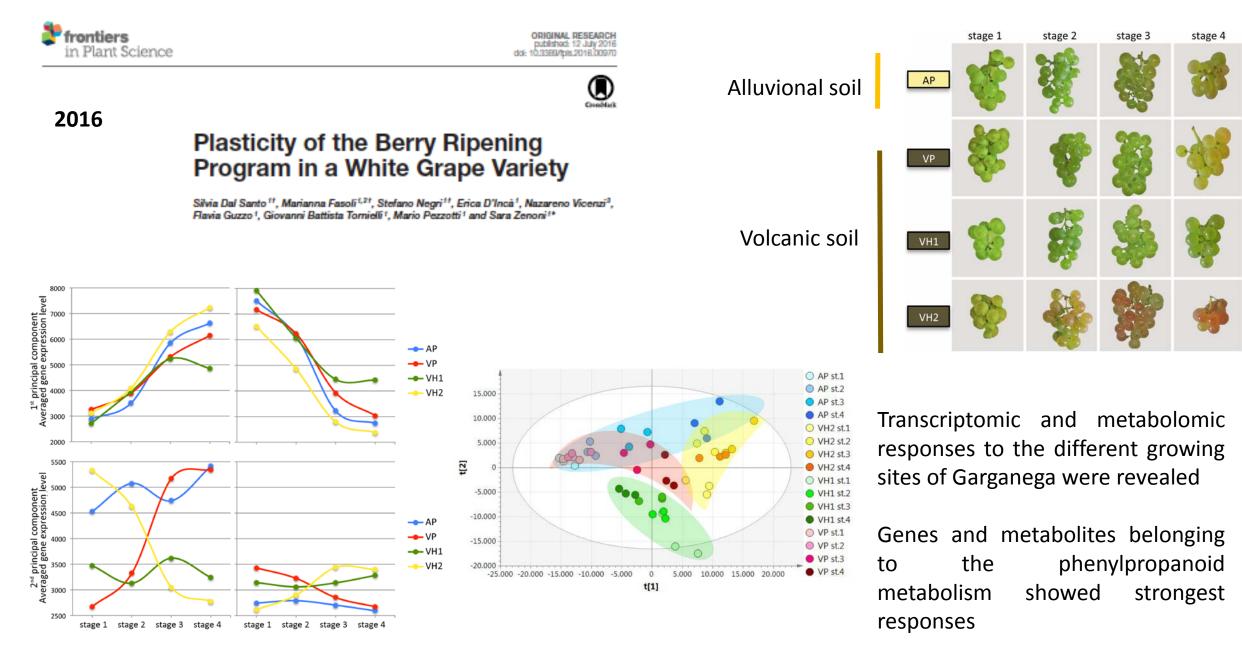
Open Access

The plasticity of the grapevine berry transcriptome

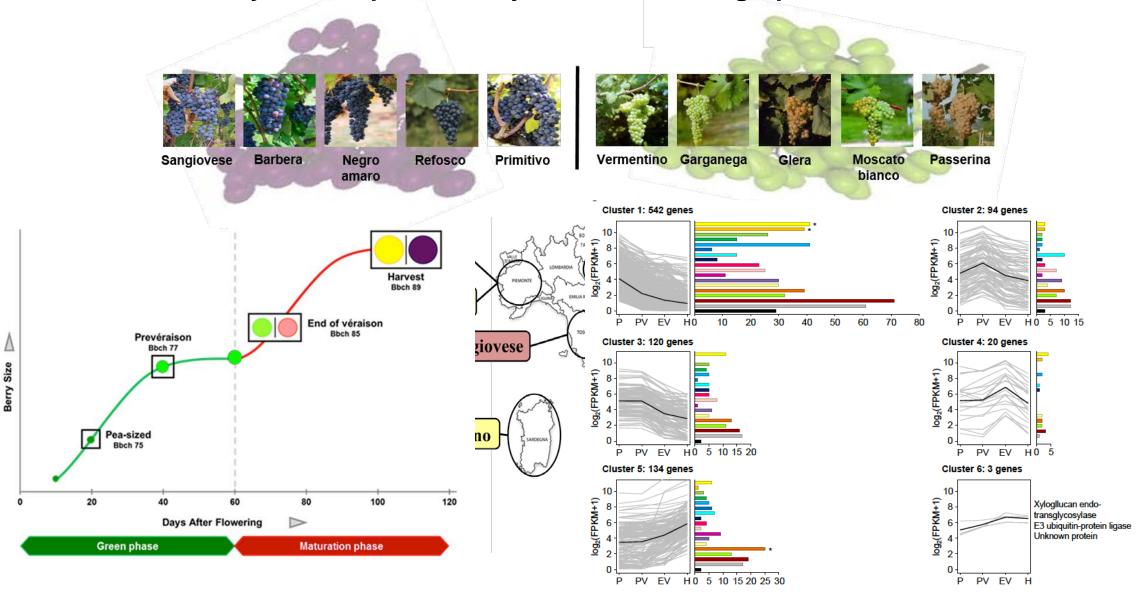

Silvia Dal Santo¹, Giovanni Battista Tornielli¹, Sara Zenoni¹, Marianna Fasoli¹, Lorenzo Farina², Andrea Anesi¹, Flavia Guzzo¹, Massimo Delledonne¹ and Mario Pezzotti^{1*}



2013


Samples frema 10 vicevards sampled at 48 developmental stages: Red berry variety Veraison, Mid-Ripening and Fully Ripe Major component of Amarone wine Most important clone cultivated in the Vintages studied: 2006 2007 2008 2 5 0.1 0.5 0

Vintage impacts more than vineyard on total variability



Genes expressed in a particular growing condition or associated to a particular growing system have been identified

Berry transcriptome analysis of ten Italian grapevine varieties

RESPONSES TO BIOTIC AND ABIOTIC STRESSES

BIOTIC STRESSES

- Plasmopara viticola downy mildew
- Erysiphe necator powdery mildew
- Leafroll-associated virus 3 (GLRaV-3)

Polesani et al. BMC Genomics 2010, 11:117 http://www.biomedcentral.com/1471-2164/11/117

RESEARCH ARTICLE

Open Access

вмс

Genomics

General and species-specific transcriptional responses to downy mildew infection in a susceptible (*Vitis vinifera*) and a resistant (*V. riparia*) grapevine species

Marianna Polesani¹, Luisa Bortesi¹, Alberto Ferrarini¹, Anita Zamboni¹, Marianna Fasoli¹, Claudia Zadra², Arianna Lovato¹, Mario Pezzotti¹, Massimo Delledonne¹, Annalisa Polverari^{1*}

Laser Microdissection of Grapevine Leaves Reveals Site-Specific Regulation of Transcriptional Response to *Plasmopara viticola*

Luisa Lenzi^{1,2}, Carla Caruso², Pier Luigi Bianchedi³, Ilaria Pertot¹ and Michele Perazzolli^{1,*} ¹Research and Innovation Center, Fondazione Edmund Mach (FEM), Via E. Mach, 1, 38010 S. Michele all'Adige, Italy ²Department of Ecological and Biological Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy ³Technology Transfer Center, Fondazione Edmund Mach (FEM), Via E. Mach, 1, 38010 S. Michele all'Adige, Italy ^{*}Corresponding author: E-mail, michele.perazzolli@fmach.it; Fax, 00390461615765. (Received September 18, 2015; Accepted October 23, 2015)

An International Journal for Plant Biology Explore this journal >

Research article

Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in *Vitis amurensis* grapevine

Xinlong Li^{a, 1}, Jiao Wu^{a, 1}, Ling Yin^a, Yali Zhang^a, Junjie Qu^b, Jiang Lu^{a, 📥,} 🎬

Original Article

Alterations in primary and secondary metabolism in *Vitis vinifera* 'Malvasía de Banyalbufar' upon infection with Grapevine leafroll-associated virus 3

Rafael Montero, María Luisa Pérez-Bueno, Matilde Barón, Igor Florez-Sarasa, Takayuki Tohge, Alisdair Robert Fernie,

Hanan El aou ouad, Jaume Flexas, Josefina Bota 🖂

First published: 14 April 2016 Full publication history

Physiologia Plantarum

RESPONSES TO BIOTIC AND ABIOTIC STRESSES

ABIOTIC STRESSES	Savol et al. BMC Plant Biology (2016) 16:67 DDI 10.1186/s12870-016-0760-1 BMC Plant Biology			
	RESEARCH ARTICLE Open Access Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (<i>Vitis vinifera</i> L.) Stefania Savol ^{1,2} , Darren C. J. Wong ³ , Panagiotis Arapitsas ¹ , Mara Miculan ²⁴ , Barbara Bucchetti ² , Enrico Peterlunge ² , Aron Fait ⁵ , Fulvio Mattivi ¹ and Simone D. Castellarin ^{2,3*}	abolic grape		
WATER LIMITATION and DROUGHT	OPEN Citation: Horticulture Research (2015) 2, 15012; doi:10.1038/hortres.2015.12 (a) Image: Citation: Horticulture Research (2015) 2, 15012; doi:10.1038/hortres.2015.12 (a) www.nature.com/hortres www.nature.com/hortres Involvement of genes related to secondary metabolism and JA ARTICLE Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming Involvement of different rootstocks Mariam Berdeja ^{1*} , Philippe Nicolas ^{1*5} 5, Christian Kappel ^{1*} 5, Zhan Wu Dal ¹ , Ghislaine Hilbert ¹ , Anthony Peccoux ¹ †, Magali Lafontaine ² , Nathalie Ollat ¹ , Eric Gomès ¹ and Serge Delrot ¹ Hilbert ¹ , Anthony Peccoux ¹ †, Magali Lafontaine ² ,			
	alon storistic trooper	fast stomatal closure		
	↑ osmotic stress-related genes	evapotranspiration r transcriptomic response ABA-related genes theat shock-related genes		
	Silvia Dal Santo ^{1†} , Alberto Palliotti ^{2†} , Sara Zenoni ¹ , Giovanni Battista Tornielli ¹ , Marianna Fasoli ^{1,3} , Paola Paci ⁴ , Sergio Tombesi ² , Tommaso Frioni ² , Oriana Silvestroni ⁵ , Andrea Bellincontro ⁶ , Claudio d'Onofrio ⁷ , Fabiola Matarese ⁷ , Matteo Gatti ⁸ , Stefano Poni ⁸ and Mario Pezzotti ^{1*}	s-related		

RESPONSES TO BIOTIC AND ABIOTIC STRESSES

Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on **Developing Cabernet Sauvignon** Grape Berries

Fatma Lecourieux⁴, Christian Kappel²⁴, Philippe Pieri², Justine Charon², Jérémy Pillet²¹, Ghislaine Hilbert², Christel Renaud², Eric Gomès³, Serge Delrot³ and David Lecourieux³⁺

BMC Plant Biology DOI 10.1186/s12870-016-0850-0 **RESEARCH ARTICLE Open Access** (CrossMark Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome

Markus Rienth^{1,2,3}, Laurent Torregrosa¹, Gautier Sarah¹, Morgane Ardisson¹, Jean-Marc Brillouet⁴ and Charles Romieu¹⁷

Thermotolerance Responses in Ripening Berries of Vitis vinifera L. cv Muscat Hamburg

Pablo Carbonell-Bejerano^{1,*}, Eva Santa María², Rafael Torres-Pérez³, Carolina Royo¹,

- Diego Lijavetzky^{3,4}, Gema Bravo³, Jone Aguirreolea², Manuel Sánchez-Díaz², M. Carmen Antolín² and
- José M. Martínez-Zapater^{1,3}

Pastore et al. BMC Genomics 2011, 12:631 http://www.biomedcentral.com/1471-2164/12/631

вмс Genomic

RESEARCH ARTICLE

Open Access

BMC

Rienth et al. BMC Plant Biology (2016) 16:164

Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening

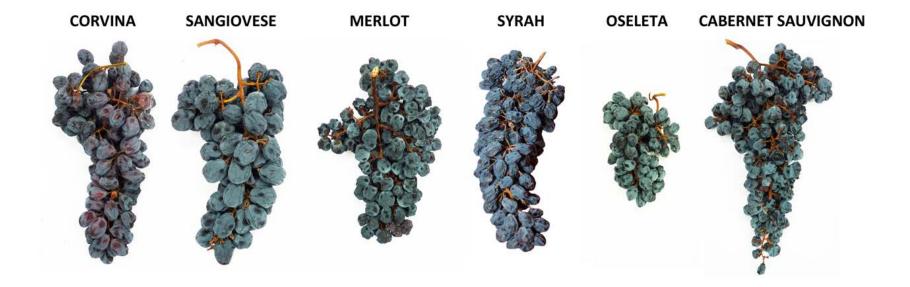
Chiara Pastore¹⁺, Sara Zenoni²⁺, Giovanni Battista Tornielli², Gianluca Allegro¹, Silvia Dal Santo², Gabriele Valentini¹ Cesare Intrieri¹, Mario Pezzotti^{2*} and Ilaria Filippetti

astore et al. BMC Plant Biology 2013, 13:30 http://www.biomedcentral.com/1471-2229/13/30

RESEARCH ARTICLE

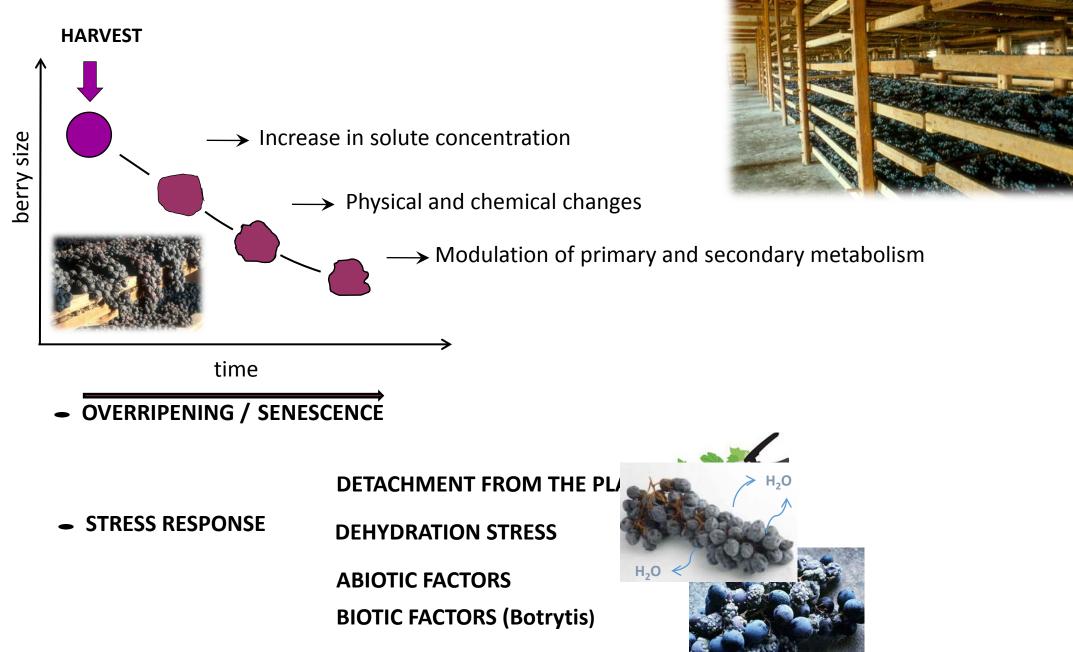
Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine

Chiara Pastore^{1†}, Sara Zenoni^{2†}, Marianna Fasoli², Mario Pezzotti², Giovanni Battista Tornielli^{2*} and Ilaria Filippetti¹

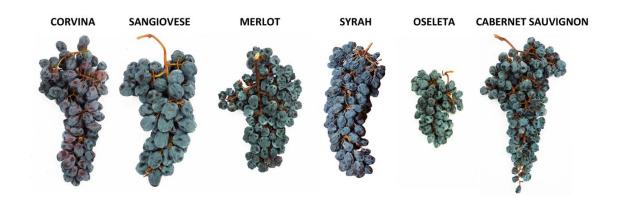

VITICULTURAL PRACTICES

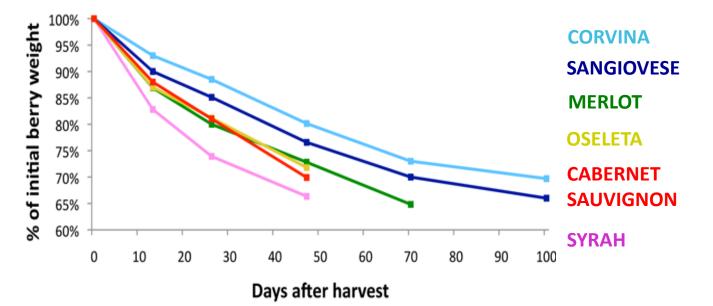
TEMPERATURE

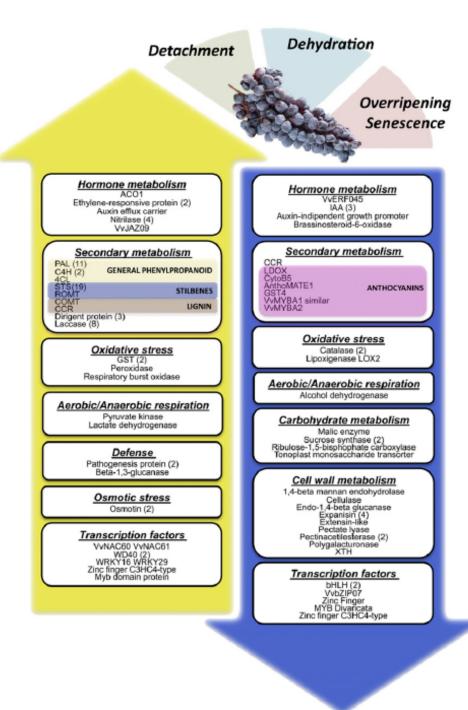
RESPONSES TO ABIOTIC STRESSES, DEVELOPMENT AND CULTIVARS

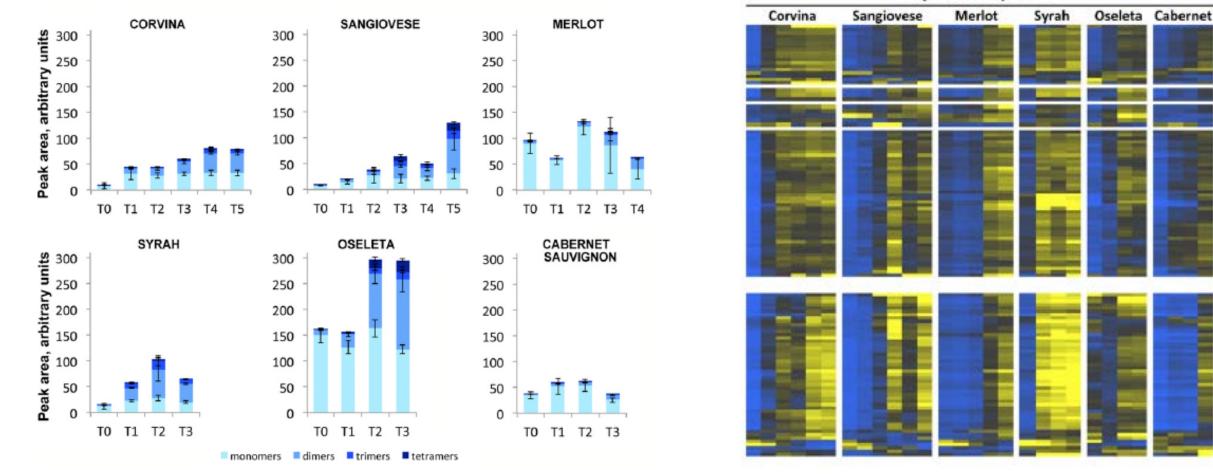

Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes¹

Sara Zenoni², Marianna Fasoli^{2,3}, Flavia Guzzo, Silvia Dal Santo, Alessandra Amato, Andrea Anesi⁴, Mauro Commisso, Markus Herderich, Stefania Ceoldo, Linda Avesani, Mario Pezzotti, and Giovanni Battista Tornielli^{*}






GRAPE POSTHARVEST DEHYDRATION


POSTHARVEST DEHYDRATION IN SIX VARIETIES

POSTHARVEST DEHYDRATION IN SIX VARIETIES

Expression profile

The activation of stilbene metabolism seems to represent a general molecular event that occurs in dehydrating berries after harvest, although the modulation intensity of stilbene accumulation clearly distinguished the behavior of genotypes.

CONCLUSIONS

• Transcriptomic and metabolomic analyses allow us to obtain a large amount of information regarding transcript and metabolite changes that characterize a particular developmental process or a specific stress response

•Technological advances are constantly improving the analytical power of "omic" approaches

•These approaches are ever more applicable to real conditions in the field

•Limits:

- o high experimental costs, in particular for transcriptomics;
- the needed of bioinformatics support;
- o the limited information about a single gene or metabolite function

<u>acknowledgements</u>

Mario Pezzotti Giovanni Battista Tornielli Silvia Dal Santo Marianna Fasoli	Università di Verona
Matteo Gatti Stefano Poni	Università Cattolica del Sacro Cuore - Piacenza
Paola Zuccolotto Marco Sandri	Università di Brescia
Chiara Pastore Ilaria Filippetti	Università di Bologna
Sergio Tombesi Alberto palliotti	Università di Perugia